skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jarecke, Karla"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available February 1, 2026
  2. Soil sampling pits across three hillslope positions - toeslope, backslope, and summit - were dug in 2020 in watershed N4D (burned every 4 years) and N1D (burned annually) to characterize the impacts of woody encroachment on subsurface soil physical, chemical, and biological properties. Pits were hand-dug to 120 cm in the toeslope position and to 60 cm deep at the backslope and summit positions. Soil pits in N4D were dug directly under dogwood shrubs (Cornus drumondii) while pits in N1B were dug under grasses and forbs. Soil pit faces were photographed to determine root fractions with depth,  soil monoliths were take to charaterize soil macroporosity with depth while soil cores were taken in each horizon for water retention analysis.  Soil sensors were also installed at four soil depths at the toeslope position and 3 soil depths at the backslope and summit positions to record half hourly soil moisture, soil temperature, soil water potential, soil electrical conductivity, and soil carbon dioxide, and soil oxygen. In addition, geophysical measurements were taken in N4D using time-lapse electrical resistivity in 2023. 
    more » « less
  3. White, Timothy; Provenzale, Antonello (Ed.)
    Free, publicly-accessible full text available November 28, 2025
  4. Two major barriers hinder the holistic understanding of subsurface critical zone (CZ) evolution and its impacts: (a) an inability to measure, define, and share information and (b) a societal structure that inhibits inclusivity and creativity. In contrast to the aboveground portion of the CZ, which is visible and measurable, the bottom boundary is difficult to access and quantify. In the context of these barriers, we aim to expand the spatial reach of the CZ by highlighting existing and effective tools for research as well as the “human reach” of CZ science by expanding who performs such science and who it benefits. We do so by exploring the diversity of vocabularies and techniques used in relevant disciplines, defining terminology, and prioritizing research questions that can be addressed. Specifically, we explore geochemical, geomorphological, geophysical, and ecological measurements and modeling tools to estimate CZ base and thickness. We also outline the importance of and approaches to developing a diverse CZ workforce that looks like and harnesses the creativity of the society it serves, addressing historical legacies of exclusion. Looking forward, we suggest that to grow CZ science, we must broaden the physical spaces studied and their relationships with inhabitants, measure the “deep” CZ and make data accessible, and address the bottlenecks of scaling and data‐model integration. What is needed—and what we have tried to outline—are common and fundamental structures that can be applied anywhere and used by the diversity of researchers involved in investigating and recording CZ processes from a myriad of perspectives. 
    more » « less
  5. Abstract The size and spatial distribution of soil structural macropores impact the infiltration, percolation, and retention of soil water. Despite the assumption often made in hydrologic flux equations that these macropores are rigid, highly structured soils can respond quickly to moisture variability‐induced shrink‐swell processes altering the size distribution of these pores. In this study, we use a high‐resolution (180 m) laser imaging technique to measure the average width of interpedal, planar macropores from intact cross sections and relate it to matrix water content. We also develop an expression for unsaturated hydraulic conductivity that accounts for dynamic macropore geometries and propose a method for partitioning sensor soil water content data into matrix and macropore water contents. The model was applied to a soil in northeastern Kansas where soil monoliths had been imaged to quantify macropore properties and continuous water content data were collected at three depths. Model‐predicted macropore width showed significant sensitivity to matrix water content resulting in changes of 15%–50% of maximum width over the 15‐month period of record. Transient saturated hydraulic conductivity predicted from the model compared favorably to a previously developed model accounting for moisture‐induced changes to structural unit porosity. Following periods of low soil moisture, infiltrating meteoric water filled highly conductive macropores increasing by several orders of magnitude which subsequently decreased as water was absorbed into the matrix and macropores drained. This model offers a means by which to combine measurable morphological data with soil moisture sensors to monitor dynamic hydraulic properties of soils susceptible to shrink‐swell processes. 
    more » « less
    Free, publicly-accessible full text available September 1, 2026
  6. ABSTRACT Woody encroachment—the expansion of woody shrubs into grasslands—is a widely documented phenomenon with global significance for the water cycle. However, its effects on watershed hydrology, including streamflow and groundwater recharge, remain poorly understood. A key challenge is the limited understanding of how changes to root abundance, size and distribution across soil depths influence infiltration and preferential flow. We hypothesised that woody shrubs would increase and deepen coarse‐root abundance and effective soil porosity, thus promoting deeper soil water infiltration and increasing soil water flow velocities. To test this hypothesis, we conducted a study at the Konza Prairie Biological Station in Kansas, where roughleaf dogwood (Cornus drummondii) is the predominant woody shrub encroaching into native tallgrass prairie. We quantified the distribution of coarse and fine roots and leveraged soil moisture time series and electrical resistivity imaging to analyse soil water flow beneath shrubs and grasses. We observed a greater fraction of coarse roots beneath shrubs compared to grasses, which was concurrent with greater saturated hydraulic conductivity and effective porosity. Half‐hourly rainfall and soil moisture data show that the average soil water flow through macropores was 135% greater beneath shrubs than grasses at the deepest B horizon, consistent with greater saturated hydraulic conductivity. Soil‐moisture time series and electrical resistivity imaging also indicated that large rainfall events and greater antecedent wetness promoted more flow in the deeper layers beneath shrubs than beneath grasses. These findings suggest that woody encroachment alters soil hydrologic processes with cascading consequences for ecohydrological processes, including increased vertical connectivity and potential groundwater recharge. 
    more » « less
  7. Abstract Surface topography can influence flow pathways and the location of runoff source areas and water transport in steep headwater catchments. However, the influence of topography on spatial patterns of residual soil moisture is less well understood. We measured soil volumetric water content (VWC) on 14 dates at 0–30 and 30–60 cm depth at 54 sites on a steep, 10 ha north‐facing forested slope in the west‐central Cascades Mountains of Oregon, USA. Spatial patterns in VWC were persistent over time, and contrary to expectations VWC at 30–60 cm depth was greater on divergent than convergent slopes, especially during wet periods (R2 = 0.27,p < 0.001). Vegetation characteristics were assessed for all VWC monitoring locations and soil properties were determined for 13 locations as local factors that affect spatial patterns in VWC. Mean VWC over all dates was negatively correlated to gravimetric rock content (R2 = 0.28,p = 0.03) and positively correlated to water storage at field capacity (R2 = 0.56,p < 0.01). The variability in rock content in quick‐draining soils influenced soil‐water retention, and by extension, created spatially heterogenous but temporally persistent patterns in VWC. While spatial patterns were persistent, they were not easily explained by surficial topography in a steep, mountainous landscape with rocky, well‐drained soils. Further research is needed to understand if combined soil‐terrain metrics would be a more useful proxy for VWC than terrain‐based wetness metrics alone. 
    more » « less